

Methods





# Genetic variants associated with distant recurrence in glioblastoma patients treated with standard therapy

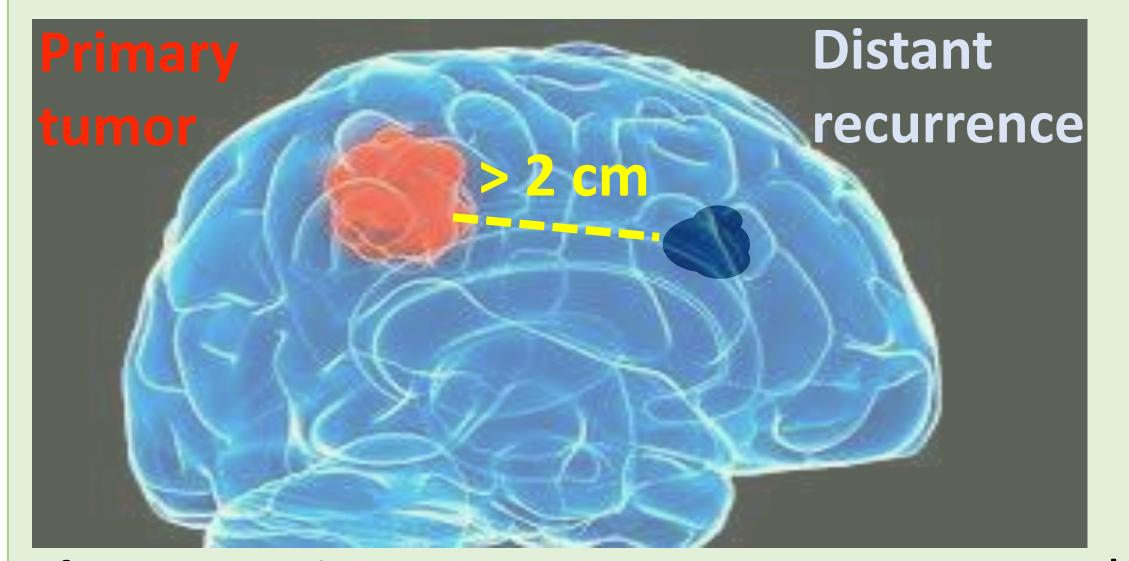
Vincent Fougner<sup>a</sup>, Shivani Bangalore Chiranth<sup>a</sup>, Christina Westmose Yde<sup>b</sup>, Dorte Schou Nørøxe<sup>a,c</sup>, Ib Jarle Christensen<sup>a</sup>, Benedikte Hasselbalch<sup>a,c</sup>, Ulrik Lassen<sup>a,c</sup>, Hans Skovgaard Poulsen<sup>a,c</sup>, and <u>Thomas Urup</u><sup>a,c</sup>

<sup>a</sup>The DCCC Brain Tumor Center, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. <sup>b</sup>Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. <sup>c</sup>Department of Oncology, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.

# Background

Migratory growth is a hallmark of glioblastoma (GBM) and is a major factor in therapeutic failure.

Distant recurrence predicts poor prognosis.<sup>1</sup>
Unmethylated *MGMT* predicts distant recurrence.<sup>1</sup>


Genetic variants serve as targets for personalized therapy.<sup>2</sup>

**Hypothesis:** Genetic variants that predict distant recurrence (migratory growth) represent key treatment targets.

# **Patients**

All GBM IDHwt patients who received standard therapy at Rigshospitalet (year 2016-21) and underwent genomic tumor profiling were included.

#### Patterns of recurrence



**Figure 1.** Distant recurrence: New tumor lesion more than 2 cm from the primary tumor.

### Genomic tumor profiling

Tumor tissue was analyzed by DNA- (WES or WGS) and RNA-sequencing.

#### **Candidate biomarkers**

Pathogenic or likely-pathogenic variants, defined by the Genomic reports,<sup>2</sup> were grouped accordingly:

- i) Gene mutations (present in >2% of samples).
- ii) Number of mutations per sample.
- iii) The presence of mutation in the four classical signaling pathways

#### **Statistics**

Cox regression analysis was used to model the association with time to distant recurrence.

# AIM: Identify genetic variants associated with distance recurrence in glioblastoma patients

## Results

| Table 1. Patient characteristics, <i>n</i> = 204 |             |
|--------------------------------------------------|-------------|
| Median age, years (range)                        | 58 (18-77)  |
| Female gender, n (%)                             | 70 (34)     |
| ECOG PS 0-1, n (%)                               | 193 (96)    |
| Subependymal, n (%)                              | 85 (42)     |
| Multifocal, n (%)                                | 17 (8)      |
| Resection, n (%)                                 | 180 (89)    |
| MRI surgical extent, n (%)                       |             |
| Measurable                                       | 39 (23)     |
| Non-measurable                                   | 61 (37)     |
| No residual contrast                             | 67 (40)     |
| Missing                                          | 13          |
| Steroid use, n (%)                               | 82 (40)     |
| MGMT methylated, n (%)                           | 91 (45)     |
| Median PFS (95% CI),                             | 7.5         |
| months                                           | (7.0-8.0)   |
| Resection at relapse, n (%)                      | 92 (47)     |
| Second line therapy, n (%)                       | 160 (82)    |
| Median OS (95% CI),                              | 19.5        |
| months                                           | (17.1-21.9) |

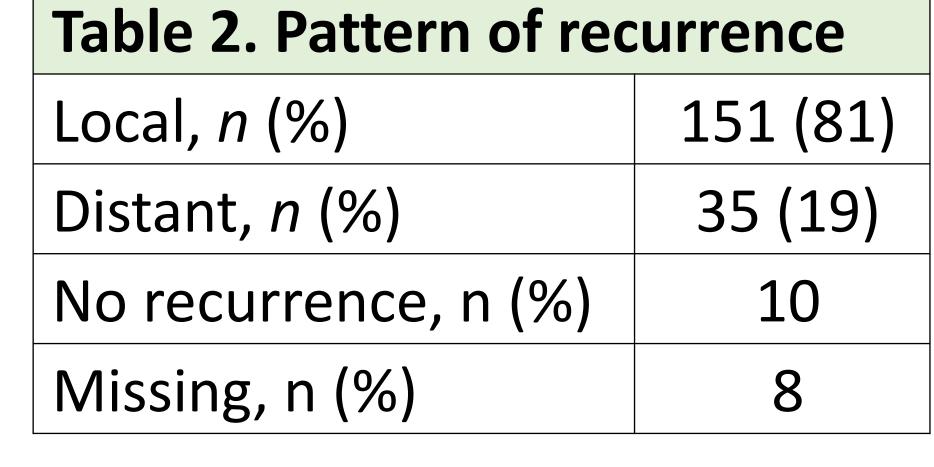



Table 3. Biomarkers associated with distant recurrence (Univar.)

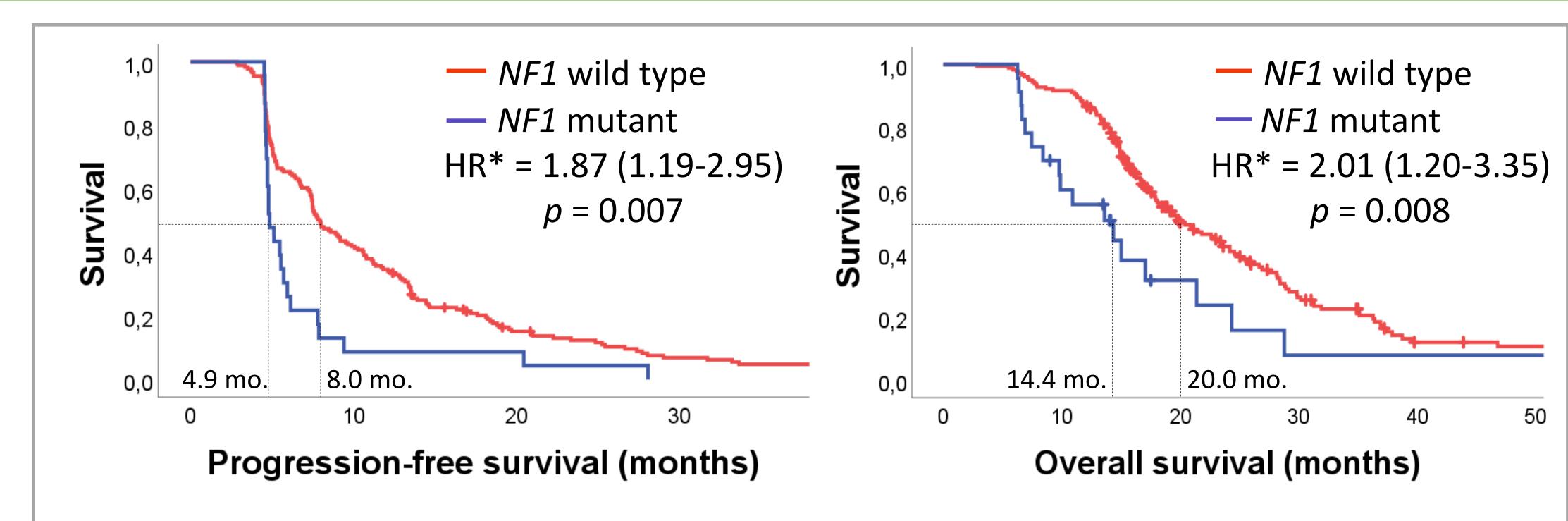
|              | HR (95%CI)       |
|--------------|------------------|
| NF1 mutation | 3.46 (1.51-7.94) |
| n = 23 (11%) | p = 0.003        |

Table 4. Prognostic model for distant recurrence

HR (95%CI)

p-value

2.75 (1.25-6.01)


0.01

3.03 (1.30-7.07)

0.01

unmethylated

**NF1** mutation



**Figure 2.** *NF1* mutation is an independent prognostic factor for PFS and OS.

\* HR adjusted for PS, age, steroid use, MGMT, resection, and multifocal disease.

# Conclusion

- NF1 mutation predicts distance recurrence.
- NF1 mutation is an independent predictor of poor progression-free survival and overall survival.
- NF1 may promote migratory growth.
- Glioblastoma patients with *NF1* mutations may benefit from personalized targeted treatment.

Correspondence: Thomas.Urup@regionh.dk

<sup>&</sup>lt;sup>1</sup> Abstract #: BIOM-24, Chiranth SB et al.

<sup>&</sup>lt;sup>2</sup> Abstract #: CTNI-32, Fougner VN et al.