

www.dcccbraintumor.dk

Prediction of distant recurrence in glioblastoma patients treated with standard therapy

Shivani Bangalore Chiranth^a, Anouk Kirsten Trip^{a,b}, Ib Jarle Christensen^a, Kirsten Grunnet^a, Søren Møller^{a,c}, Benedikte Hasselbalch^{a,c}, Aida Muhic^{a,c}, Ulrik Lassen^{a,c}, Hans Skovgaard Poulsen^{a,c}, and <u>Thomas Urup^{a,c}</u>

^aThe DCCC Brain Tumor Center, Rigshospitalet, Copenhagen, Denmark. ^bDanish Center for Particle Therapy, Aarhus University Hospital, Denmark. ^cDepartment of Oncology, Rigshospitalet, Copenhagen, Denmark

Background	Method				
Migratory growth is a hallmark of glioblastoma (GBM) and is a major factor in therapeutic failure.	Patients Two prospective cohorts of consecutive, non-selected GBM IDHwt patients treated with standard therapy between 2005-2016 (cohort 1)				
Hypothesis: Biomarkers that predict distant recurrence (migratory growth) can be used to personalize the treatment of GBM natients	and 2016-2021 (cohort 2) at Rigshospitalet, Copenhagen were included. Patterns of recurrence Distant recurrence = new tumor lesion outside the radiotherapy (RT)	RT field			

incatine of ODM patients

Related Abstracts:

0,8

Abstract #: BIOM-39, Fougner VN et al. Abstract #: CTNI-32, Fougner VN et al. field (Figure 1).

Statistics

Cox regression analysis was used to model the association with time to distant recurrence.

Aim Identify clinical and molecular factors associated with distance recurrence of glioblastoma								
Results								
Figure 2. Overall survival and pattern of recurrence Table 1. Patient characteristics Cohort 1 Cohort 2 p-value n = 628 n = 395		Table 2. Selected biomarkers associated with distant recurrence (Univariate)						
			Cohort 1 n = 628	Cohort 2 n = 395	p-value		Cohort 1: HR (95% CI) 1.02 (0.86-1.22)	Cohort 2: HR (95% CI) 0.93 (0.75-1.15)
1,0		Median age, years (range)	60 (22-79)	59 (17-77)	0.13	Age (10-years increase)	<i>P</i> = 0.80 1.48 (0.79-2.78)	<i>P</i> = 0.51 1.69 (0.80-3.57)
0,8	Local recurrence Distant recurrence	Gender, Male, n (%) PS, n (%)	393 (66)	220 (62)	0.27	Multifocal Subependymal	P = 0.22	<i>P</i> = 0.17 0.78 (0.46-1.31)

Cohort 2

--- Local recurrence

Distant recurrence

0	364 (62)	209 (60)	0.56
1	192 (32)	124 (35)	
2	35 (6)	17 (5)	
Multifocal, n (%)	75 (13)	45 (13)	0.94
Steroid use, n (%)	354 (60)	161 (46)	<0.001
Resection, n (%)			
Biopsy	83 (14)	65 (19)	0.07
Resection	507 (86)	287 (81)	
MGMT methylated, n (%)	260 (53)	148 (42)	<0.001
Positive P53, n (%)	379 (75)	215 (68)	0.02
Positive EGFR, n (%)	417 (82)	NR	_
Distant recurrence pattern, n (%)	110 (23)	67 (22)	0.82
Median PFS (95% CI)	7.1 (6.5-7.6)	7.5 (6.8-8.2)	0.28
Median OS (95% CI)	15.1 (14.1-16.1)	17.2 (15.8-18.6)	0.01
Resection at recurrence	228 (41)	114 (34)	0.04

localisation		<i>P</i> = 0.35			
Non mothylated MCNAT	2.03 (1.35-3.05)	2.21 (1.30-3.74)			
Non-methylated wigivit	<i>P</i> <0.001	<i>P</i> = 0.003			
P53 expression	0.71 (0.46-1.10)	0.54 (0.32-0.91)			
	<i>P</i> = 0.13	<i>P</i> = 0.02			
ECED overoccion	1.96 (1.02-3.78)	ND			
EGFK expression	<i>P</i> = 0.04				
Table 3. Biomarkers associated with time to distant recurrence					
(NAultivariata)					
(IVIUILIVAIIALE)					
	Cohort 1: HR (95% CI)	Cohort 2: HR (95% CI)			
Δge (10-years increase)	0.87 (0.70-1.09)	1.06 (0.85-1.33)			
	<i>P</i> = 0.23	<i>P</i> = 0.61			
Performance status 1-2	1.38 (0.86-2.21)	0.95 (0.55-1.66)			
vs. 0	<i>P</i> = 0.18	<i>P</i> = 0.86			
Multifocal disease	1.08 (0.51-2.27)	2.05 (0.94-4.46)			
	<i>P</i> = 0.84	<i>P</i> = 0.07			
Corticostoroid uso	1.55 (0.97-2.48)	0.89 (0.52-1.52)			
Conticosteroia ase	<i>P</i> = 0.07	<i>P</i> = 0.66			
Bionsy	1.50 (0.78-2.90)	1.71 (0.85-3.46)			
ыорзу	<i>P</i> = 0.22	<i>P</i> = 0.13			
Non-mothylated MCNAT	2.48 (1.60-3.85)	2.70 (1.52-4.80)			
	<i>P</i> < 0.001	<i>P</i> < 0.001			

